Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation.

نویسنده

  • M A Krasilnikov
چکیده

Phosphatidylinositol-3 kinase (PI3K) is one of the most important regulatory proteins that is involved in different signaling pathways and controlling of key functions of the cell. The double-enzymatic activity of PI3K (lipid kinase and protein kinase) as well as the ability of this enzyme to activate a number of signal proteins including some oncoproteins determines its fundamental significance in regulation of cell functions such as growth and survival, aging, and malignant transformation. Among the main effectors of PI3K are the mitogen-transducing signal proteins (protein kinase C, phosphoinositide-dependent kinases, small G-proteins, MAP (mitogen activated protein) kinases), which are activated either via their interaction with lipid products of PI3K or through PI3K-dependent phosphorylation of proteins. The anti-apoptotic effect of PI3K is realized by activation of proteins from another signaling pathway--protein kinase B (PKB) and/or PKB-dependent enzymes (GSK-3, ILK). PI3K plays a critical role in malignant transformation. PI3K itself possesses oncogenic activity and also forms complexes with some viral or cellular oncoproteins (src, ras, rac, alb, T-antigen), whose transforming activities are realized only in presence of PI3K. The transforming effect of PI3K is supposed to occur on the basis of complex alterations in cellular signaling pathways: appearance of constitutively generated PI3K-dependent mitogen signal and activation of some protooncogenes (src, ras, rac, etc.), PI3K/PKB-pathway stimulation resulting in delay of apoptosis and increase of cell survival, and actin cytoskeleton reorganization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CDK Blockade Using AT7519 Suppresses Acute Myeloid Leukemia Cell Survival through the Inhibition of Autophagy and Intensifies the Anti-leukemic Effect of Arsenic Trioxide

The strong storyline behind the critical role of cyclin-dependent kinase (CDK) inhibitor proteinsin natural defense against malignant transformation not only represents a heroic perspective forthese proteins, but also provides a bright future for the application of small molecule inhibitorsof CDKs in the novel cancer treatment strategies. The results of the present study revea...

متن کامل

CDK Blockade Using AT7519 Suppresses Acute Myeloid Leukemia Cell Survival through the Inhibition of Autophagy and Intensifies the Anti-leukemic Effect of Arsenic Trioxide

The strong storyline behind the critical role of cyclin-dependent kinase (CDK) inhibitor proteinsin natural defense against malignant transformation not only represents a heroic perspective forthese proteins, but also provides a bright future for the application of small molecule inhibitorsof CDKs in the novel cancer treatment strategies. The results of the present study revea...

متن کامل

Human Mammary Epithelial Cells The Glucocorticoid Receptor Mediates a Survival Signal in

Complex autocrine and paracrine signaling pathways control the multiple cycles of epithelial cell proliferation and involution characteristic of the human mammary gland. Activation of these pathways can lead to cell division, cell cycle arrest, apoptosis, or survival; their aberrant regulation often contributes to malignant transformation. In this report, we show that glucocorticoid signals a p...

متن کامل

The glucocorticoid receptor mediates a survival signal in human mammary epithelial cells.

Complex autocrine and paracrine signaling pathways control the multiple cycles of epithelial cell proliferation and involution characteristic of the human mammary gland. Activation of these pathways can lead to cell division, cell cycle arrest, apoptosis, or survival; their aberrant regulation often contributes to malignant transformation. In this report, we show that glucocorticoid signals a p...

متن کامل

PI3K/Akt/mTOR and CDK4 combined inhibition enhanced apoptosis of thyroid cancer cell lines

Introduction Thyroid cancer is a malignant disease with poor prognosis. The PI3K/Akt/mTOR and Cyclin-Dependent Kinase 4 (CDK4) pathways are vital regulators of tumor cell proliferation and survival. Therefore the present study was designed to use dual inhibition of such pathways to kill thyroid cancer cells. Methods and materials The effects of each inhibitors on human ATC and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry. Biokhimiia

دوره 65 1  شماره 

صفحات  -

تاریخ انتشار 2000